
2
Preliminaries

As stated in the introduction, given a tree T rooted at node r, an

assignment A and a weight function w, the cost of A under the weights w

is given by EP(T,A,w) =
∑

u∈T d(r, u, T + A)w(u). (We omit the weight

function when it is clearly understood from the context.) Furthermore, we

extend this definition to subtrees of T : for any subtree T ′ of T , EP(T,A)T ′ =
∑

u∈T ′ d(r, u, T +A)w(u) indicates the expected cost of reaching nodes of T ′ in

the enhanced tree T +A. Also, OPTk(T,w) denotes the cost of the optimal k-

assignment for T with respect to the weights w (henceforth we use OPT(T,w)

as a shorthand for OPT1(T,w)).

In addition, for any subset U of nodes of T , w(U) denotes the sum of

the weights of the elements of U , namely w(U) =
∑

u∈U w(u). For each node u

of T we define Tu as the subtree of T composed by all descendants1 of u. For

any tree T , we use r(T ) to denote the root of T . Also, for every tree T we use

height(T ) to denote the height of T , that is, the length (in number of arcs) of

the largest path from r(T ) to a node u ∈ T . Similarly, for every enhanced tree

T +A, height(T +A) is defined as the length of the largest user path in T +A

from r(T ) to a node u ∈ T . Finally, we extend the set difference operation to

trees: given trees T 1 = (V 1, E1) and T 2 = (V 2, E2), T 1 −T 2 is the forest of T 1

induced by the nodes V 1 − V 2.

A concept that is helpful during the analysis of the results is that of a

non-crossing assignment. Two hotlinks (u, a) and (v, b) for T are crossing if

u is an ancestor of v, v is an ancestor of a and a is an ancestor of b (Figure

1.1.b). An assignment is said to be non-crossing if it does not contain crossing

hotlinks. Using the definition of the greedy model, it is not difficult to see

that any crossing assignment can be transformed into a non-crossing one via

removal of some hotlinks, and that these removals do not affect the expected

path length.

The next proposition is a direct implication of the definition of a valid

hotlink assignment.

1By definition both the set of ancestors and the set of descendants of a node u include
u. In order to exclude u, we refer to proper ancestors of proper descendants.
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Proposition 1 Consider a tree T and an assignment A for it. Let u and v be

nodes in T such that v ∈ Tu. Let T ′ be a subtree of T that contains both u and

v. Then, the user path from u to v in T + A equals to the user path from u to

v in T ′ + A, and consequently in T ′ + A′, where A′ is the set of hotlinks of A

with both endpoints in T ′.

Another related proposition, which can be easily proved by induction, is

the following:

Proposition 2 Consider a tree T and an assignment A for it. Let u and v

be nodes of T and let P be the path in T + A from u to v. Also consider an

assignment A′ such that for each u′ ∈ P and for each ancestor v′ of v the

hotlink (u′, v′) belongs to A′ if and only if it also belong to A. Then the path

from u to v is the same in T + A and T + A′.

Now we state two important structural lemmas that allow us to perform

transformations on hotlink assignments without increasing much the expected

user path length (proofs in the appendix).

Lemma 1 (Multiple Removal Lemma) Consider a tree T rooted at node r

and a weight function w. Let A be an assignment for T with at most g hotlinks

leaving r and at most one hotlink leaving every other node. Then, there is

an assignment A′ with at most one hotlink per node such that EP(T,A′) ≤

EP(T,A) + (g − 1)w(T ).

Lemma 2 Consider a tree T and a weight function w. Let T ′ be a subtree of T .

If v ∈ T is an ancestor of r(T ′), then
∑

u∈T ′ d(v, u, T +A)w(u) ≥ OPTg(T
′, w)

for any g-assignment A.

Corollary 1 (Supermodularity) Consider a tree T and a weight function

w. Let {T 1, T 2, . . . , T k} be pairwise disjoint subtrees of T . Then OPTg(T,w) ≥
∑k

i=1 OPTg(T
i, w).

Proof : Let A∗ be an optimal g-assignment for T . As the trees {T i} are

pairwise disjoint, the non-negativity of both d(.) and w(.) implies that:

OPTg(T,w) =
∑

u∈T

d(r(T ), u, T + A∗)w(u) ≥
k

∑

i=1

∑

u∈T i

d(r(T ), u, T + A∗)w(u)

≥
k

∑

i=1

OPTg(T
i, w)

where the last inequality follows from Lemma 2. �
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The following lemma generalizes the well known fact that every tree U

has a node, say u, such that all trees in the forest U \ u have at most |U |/2

nodes and can be proved in a similar way.

Lemma 3 Consider a tree U , a weight function w and a constant α. Then,

there is a partition of U into subtrees such that each, except possibly the one

containing r(U), has weight with respect to w greater than α. In addition, for

every tree U i in the partition, each of the subtrees rooted at the children of

r(U i) have weight not greater than α.
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